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Abstract
Dispersive effects due to microstructure of materials combined with
nonlinearities give rise to solitary waves. In this paper the existence of solitary
wave solutions is proved for a rather general hierarchical governing equation
which accounts for nonlinearities on both macro- and microscales. Properties of
the waves are established. Waves are asymmetric in the case of the nonlinearity
in the microscale. Dispersive effects are due to the scale dependence.

PACS numbers: 43.25.Rq, 46.40.Cd
Mathematics Subject Classification: 74J35, 74E15

1. Introduction and problem formulation

Microstructured materials like alloys, crystallites, ceramics, functionally graded materials, etc
have gained wide application. The modelling of wave propagation in such materials should
be able to account for various scales of microstructure [1–3]. The scale dependence involves
dispersive effects and if in addition the material behaves nonlinearly, then dispersive and
nonlinear effects may be balanced. As widely known, in this case solitary waves may emerge
as a result of this balance.

The existence and emergence of solitary waves in complicated physical problems apart
from the model equations of mathematical physics must be analysed with sufficient correctness.
Although there exists a possibility of using numerical simulation, the conditions and/or
restrictions to be satisfied for the existence of solitary waves should be established analytically.
Numerical simulation does not give exact information in this direction. Moreover, the equation
to be studied in this paper is not integrable. This is another reason why the analytical results
are of great interest.

There are several studies where the governing equations for waves in microstructured
solids have been derived and the solitary waves analysed [4–6]. The crucial point, however, is
to distinguish between nonlinearities on macro- and microlevel together with proper modelling
of dispersive effects. Here we follow the Mindlin model [7] and use the hierarchical approach
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by Engelbrecht and Pastrone [4]. The basic 1D model for longitudinal waves in material
possessing microstructure is

ρutt = σx, (1)

Iψtt = ηx − τ, (2)

where u is the macrodisplacement, ψ is the microdeformation, ρ and I are the macrodensity
and microinertia, respectively, σ is the macrostress, η is the microstress and τ is the interactive
force. We suppose that the material is physically nonlinear, although we have kept linear
deformation and material coordinates x. At this stage we neglect possible dissipation and
derive only the governing equation involving dispersive and nonlinear effects.

We consider the free energy function W in the following form:

W = W2 + W3, (3)

where W2 is the simplest quadratic function

W2 = 1
2au2

x + 1
2Bψ2 + 1

2Cψ2
x + Dψux (4)

and W3 includes nonlinearities on both the macro- and microlevel

W3 = 1
6Nu3

x + 1
6Mψ3

x . (5)

Here a, B,C,D,N and M are constants. Then using the formulae

σ = ∂W

∂ux

, η = ∂W

∂ψx

, τ = ∂W

∂ψ
(6)

we can rewrite systems (1), (2) in terms of u and ψ (cf [4, 8])

ρutt = auxx + Nuxuxx + Dψx, (7)

Iψtt = Cψxx + Mψxψxx − Dux − Bψ. (8)

Let us rewrite this system in dimensionless variables X = x
L
, T = tc0

L
,U = u

U0
, where

U0 and L are certain constants (e.g. amplitude and wavelength of an initial excitation) and
c2

0 = a
ρ

. Introducing the geometric parameters δ = l2

L2 , ε = U0
L

, where l is the scale of the
microstructure, this system reads

UT T = UXX +
Nε

ρc2
0

UXUXX +
D

ρc2
0ε

ψX, (9)

δaI ∗ψT T = δC∗ψXX + δ3/2M∗ψXψXX − DεUX − Bψ, (10)

where I = I ∗ρl2, C = C∗l2 and M = M∗l3.
In order to eliminate the microdeformation ψ from (9), (10) we make use of the slaving

principle (cf [4, 6, 8]). We deduce from (10) the expression for ψ

ψ = −Dε

B
UX +

δ

B
(C∗ψXX − aI ∗ψT T ) +

δ3/2M∗

B
ψXψXX

and expand ψ into a Taylor series with respect to δ1/2: ψ = ψ0 + δ1/2ψ1 + δψ2 + δ3/2ψ3 + · · ·.
Then we obtain the following formulae for the first four terms in this expansion:

ψ0 = −Dε

B
Ux, ψ1 = 0,

ψ2 = Dε

B2
(aI ∗UT T − C∗UXX)X, ψ3 = D2M∗ε2

2B3

(
U 2

XX

)
X
.
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Substituting ψ0 + δψ2 + δ3/2ψ3 for ψ in (9) we arrive at the following hierarchical governing
equation for U:

UT T = bUXX +
µ

2

(
U 2

X

)
X

+ δ(βUT T − γUXX)XX − δ3/2 λ

2

(
U 2

XX

)
XX

, (11)

where

b = 1 − D2

aB
, µ = Nε

a
, β = D2I ∗

B2
, γ = D2C∗

aB2
, λ = D3M∗ε

aB3
.

(12)

The inequalities

0 < b < 1, δ, β, γ > 0 (13)

are valid for the coefficients b, δ, β and γ . Equation (11) actually involves hierarchically two
wave operators

UT T − bUXX − µ

2

(
U 2

X

)
X

and δ

(
βUT T − γUXX − δ1/2 λ

2
U 2

XX

)
XX

(14)

characteristic of the macro- and microstructure, respectively. If the scale parameter δ is small
then the influence of microstructure can be neglected. Conversely, if δ is large then the
influence of macrostructure is weaker and the wave process is governed by the properties of
the microstructure. Clearly, the intermediate case includes both effects.

Although the nonlinearities due to macro- and microstructure are identical in systems (9),
(10), their influence in the single governing equation (11) is different. The nonlinear term
µ

2

(
U 2

X

)
X

, related to the macrostructure, compensates the dispersion caused by the higher-order
derivatives and leads to the existence of solitary waves. On the other hand, the nonlinearity in
the microscale, expressed by δ3/2 λ

2

(
U 2

XX

)
XX

, deforms the solitary wave.
For future analysis we rewrite (11) by means of lower-case letters:

utt = buxx +
µ

2

(
u2

x

)
x

+ δ(βutt − γ uxx)xx − δ3/2 λ

2

(
u2

xx

)
xx

. (15)

The related equation for the deformation v = ux reads

vtt = bvxx +
µ

2
(v2)xx + δ

(
βvtt − γ vxx

)
xx

− δ3/2 λ

2

(
v2

x

)
xxx

. (16)

Travelling wave solutions of (16) have the form

v(x, t) = w(x − ct), (17)

where c is a free parameter (velocity of the wave) and w = w(ξ) satisfies the equation

(c2 − b)w′′ − µ

2
(w2)′′ − δ(βc2 − γ )wIV + δ3/2 λ

2
[(w′)2]′′′ = 0. (18)

We treat equation (18) in the classical sense requiring the solution to be four times continuously
differentiable. We are interested in solitary wave solutions, i.e. solutions, which are nontrivial
(w �≡ 0) and vanish at infinity. According to the latter requirement we complement
equation (18) with the conditions

w(ξ),w′(ξ), w′′(ξ) → 0 as |ξ | → ∞. (19)

The aim of this paper is to give a mathematically rigorous explanation of the existence and
properties of solitary waves in materials characterized by equation (18). In section 2 we derive
a canonical description for the problem, and in section 3 prove the existence of solitary waves
and establish their basic properties. Section 4 deals with physical and geometrical properties
for both normal and anomalous dispersion. A short discussion is presented in section 5. The
proofs of lemmas are given in two appendices.
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2. Canonical description of the problem

Let us start by integrating twice (18). This leads to the equation

(c2 − b)w − µ

2
w2 − δ(βc2 − γ )w′′ + δ3/2 λ

2
[(w′)2]′ = C1ξ + C2, (20)

where C1 and C2 are arbitrary constants. In view of (19) we have C1 = C2 = 0. Therefore,
under condition (19), equation (18) is equivalent to the equation of the second order

(c2 − b)w − µ

2
w2 − [δ(βc2 − γ ) − δ3/2λw′]w′′ = 0. (21)

Further, we multiply this equation by w′ to obtain w′′[δ(βc2 − γ )w′ − δ3/2λ(w′)2] =[
(c2 − b)w − µ

2 w2
]
w′ and integrate once again taking (19) into account. This results in

the equation

δ(βc2 − γ )

2
(w′)2 − δ3/2λ

3
(w′)3 = c2 − b

2
w2 − µ

6
w3. (22)

In order to study (22) we assume the inequalities

βc2 − γ �= 0, c2 − b �= 0, µ �= 0. (23)

These relations are necessary for the existence of the solitary wave solution. Namely, the
following lemma holds.

Lemma 1. If (18) has a solitary wave solution then (23) are valid.

Proof of lemma 1 is shifted to appendix A of the paper.
Dividing by βc2 − γ �= 0 in (22) we obtain the equation of the first order

(w′)2 − 2δ1/2λ

3(βc2 − γ )
(w′)3 = c2 − b

δ(βc2 − γ )
w2 − µ

3δ(βc2 − γ )
w3. (24)

We can make some immediate conclusions from this equation. Noting that w,w′ → 0 as
|ξ | → ∞ we see that the asymptotic relation

(w′)2 ∼ c2 − b

δ(βc2 − γ )
w2 as |ξ | → ∞ (25)

is valid for the solution. This leads to the additional necessary solvability condition

c2 − b

βc2 − γ
> 0. (26)

Now we introduce the following three parameters which, as we will see later on, have certain
physical or geometrical meaning:

κ :=
√

c2 − b

δ(βc2 − γ )
, A := 3(c2 − b)

µ
, � := 2

[
c2 − b

βc2 − γ

]3/2
λ

µ
. (27)

In terms of these parameters equation (24) has the form

(w′)2 − �

κA
(w′)3 = κ2w2

(
1 − w

A

)
. (28)

Thus, the solution depends upon κ,A and �.
The parameter κ is the exponential decay rate of the solution. This follows if we compare

(25) with the definition of κ . Then we obtain

(w′)2 ∼ κ2w2 as |ξ | → ∞, (29)
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which implies

ln|w(ξ)| ∼ −κ|ξ | as |ξ | → ∞. (30)

The inverse of decay rate 1/κ is usually referred to as the width of the wave because it is
proportional to the width of the observable support of the wave. Later on we will see that A

is the amplitude of the wave. The third parameter � is related to the asymmetry of the wave.
The size of the parameter � which depends on the ratio of coefficients of nonlinear terms of
the wave equation λ

µ
, is crucial for the existence of the solitary wave. We will study it closely

in section 3 making use of the geometry of trajectories of the equation on the phase plane.
The physical background will be explained in section 4.

To simplify the study of (28), we introduce new variables

y = 1

A
w, ζ = κξ. (31)

Then equation (28) is reduced to the following canonical equation for y(ζ ):

(y ′)2 − �(y ′)3 = y2 − y3. (32)

Here y ′ = dy

dζ
. For further integration, this equation has first to be solved with respect to y ′:

y ′ = Q(y). (33)

Then the inverse of the solution y(ζ ) is expressed in the form

ζ =
∫

dy

Q(y)
. (34)

Unfortunately, an analytical integration of (33) is very complicated because Q contains an
inverse of a cubic function in terms of another cubic function. To the authors’ knowledge, it
cannot be integrated within known functions. Nevertheless, a simple particular case occurs
when the nonlinearity in the microscale is absent, i.e. λ = 0. Then � = 0 and we obtain a
symmetric bell-shaped solitary wave in the explicit form

y(ζ ) = cosh−2

(
ζ

2

)
�⇒ w(ξ) = A cosh−2

(
κξ

2

)
. (35)

This case has been thoroughly studied in [6, 9, 10].
Another equivalent representation of equation (18) can be derived, too. Namely, we can

write equation (21) in the form of the autonomous system of the first order

w′ = p, p′ = (c2 − b)w − µ

2 w2

δ(βc2 − γ ) − δ3/2λp
. (36)

Here the denominator δ(βc2 − γ ) − δ3/2λp = δ(βc2 − γ ) − δ3/2λw′ is not identically zero.
Indeed, otherwise by (23) we had the relations w′ ≡ βc2−γ

δ1/2λ
�= 0, and (c2 − b)w − µ

2 w2 ≡
0 �⇒ w′ ≡ 0, which contradict each other.

In canonical variables (36) reads

y ′ = z, z′ = y (2 − 3y)

2 − 3�z
. (37)

Systems (36) and (37) are suitable for numerical solution of the problem. The form (37) will
be used in analysis, too.
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2
3Θ

2
3 ��

z

yO

Figure 1. Phase portrait of (37).

2
3Θ

z

g4
27Θ2

z=f−1
1 (g)

z=f−1
2 (g)

z=f−1
3 (g)

Figure 2. Function f −1(g).

3. Existence and basic properties of canonical solitary waves

Let us begin with the case � � 0. Since the solitary wave solution of (32) satisfies the
conditions y, y ′ → 0 as |ζ | → ∞, the trajectory (phase curve) T of (37), corresponding to
this solution, must satisfy the following condition:

T is a closed curve containing O = (0, 0). (38)

To see the location of such a trajectory on the phase plane, we denote by 
φ = (φ1, φ2) the
right-hand side vector of system (37), i.e. φ1 = z, φ2 = y(2−3y)

2−3�z
, and observe that the zeros

y = 0, y = 2
3 , z = 0 and the singularity z = 2

3�
of φ1, φ2 divide the phase plane into

nine subregions. The vector 
φ preserves the orientation in each of these subdomains. The
corresponding phase portrait is shown in figure 1. Due to the orientation of 
φ, a trajectory T
with property (38) can be located only in the quarter y � 0, z < 2

3�
.

The equation of T is by (32) z2 − �z3 = y2 − y3. We are going to study this equation in
the quarter y � 0, z < 2

3�
. To this end we express it as z = f −1(y2 − y3) where f −1 is the

inverse of f (z) = z2 − �z3. To see more clearly the behaviour of this function we introduce
the intermediate variable g and split the equation z = f −1(y2 − y3) into two subsequent
relations

z = f −1(g), g = y2 − y3.

The components f −1(g) and g(y) are graphed in figures 2 and 3.
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4
27

g

y2
3 1

Figure 3. Function g = y2 − y3.

2
3Θ

z

yO 2
3

z=f−1
1 (y2 y3)

z=f−1
2 (y2−y3)

1y1 y2

Figure 4. T in the case � > 1.

��

2
3

z

yO 2
3

�

z=f−1
1 (y2 y3)

z=f−1
2 (y2−y3)

1

Figure 5. T in the case � = 1.

The inverse f −1 has three branches f −1
1 , f −1

2 and f −1
3 . The latter one is not related to

the solitary wave because it falls beyond the singularity line z = 2
3�

. The remaining branches
f −1

1 and f −1
2 are defined for non-negative values of g. This together with the above inequality

y � 0 restricts the domain of g to [0, 1]. The branch f −1
1 forms the curve z = f −1

1 (y2 − y3),
which connects the points (0, 0) and (1, 0) and passes through the lower half-plane z < 0
(lower parts of the trajectories in figures 4–6).

Concerning another branch f −1
2 , three different particular cases can occur:

(1) � > 1. Let us compare the range of g which is
[
0, 4

27

]
with the domain of f −1

2

which is
[
0, 4

27�2

]
. Since 4

27�2 < 4
27 , the whole range of g does not go in the domain
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2
3Θ

z

yO 2
3

z=f−1
1 (y2 y3)

z=f−1
2 (y2−y3)

1

Figure 6. T in the case 0 � � < 1.

of f −1
2 . From figure 3 we see that restricting the range of g to set

[
0, 4

27�2

]
restricts

the domain of g to a certain union of the form [0, y1] ∪ [y2, 1], where y1 and y2 are
some numbers in intervals

(
0, 2

3

)
and

(
2
3 , 1

)
, respectively. Summing up, the composition

z = f −1
2 (g(y)) = f −1

2 (y2 −y3) is defined for y ∈ [0, y1]∪[y2, 1] but not for y ∈ (y1, y2).
This case is illustrated in figure 4. System (37) has not a trajectory with property (38),
hence the solitary wave does not exist.

(2) � = 1. Then the curve z = f −1
2 (y2 −y3) connects the points (0, 0) and (1, 0) and passes

through the upper half-plane z > 0 (see figure 5). Function z = f −1
2 (y2 − y3) has a

maximum
(

2
3 , 2

3

)
which is located on the singularity line z = 2

3 . To see the behaviour
of the curve at this point we observe that the equation of the trajectory has the form
z2 − z3 = y2 −y3, which admits a particular linear solution z = y passing through (0, 0).
This implies that the curve z = f −1

2 (y2 − y3) is the straight line z = y to the left of
y = 2

3 . It has positive slope at the maximum
(

2
3 , 2

3

)
, hence z = f −1

2 (y2 − y3) is not
smooth at

(
2
3 , 2

3

)
. The function dz

dy
is discontinuous, hence y ′′ is discontinuous. Four times

continuously differentiable solitary wave solution does not exist. However, the solution
exists in a certain generalized sense.

(3) 0 � � < 1. Then 4
27�2 > 4

27 . The curve z = f −1
2 (y2 − y3) connects the points

(0, 0) and (1, 0) and passes through the band 0 < z < 2
3�

. This case is presented in
figure 6. The trajectory T, defined as the union of the curves z = f −1

1 (y2 − y3) and
z = f −1

2 (y2 − y3), has property (38). Let us consider the Cauchy problem for (37) with
the initial conditions y(0) = 1, z(0) = 0. This has a solution, which by the relation
z2 ∼ y2 as y → 0, following from the equation z2 − �z3 = y2 − y3, satisfies the
conditions y(ζ ), z(ζ ) = y ′(ζ ) → 0 as |ζ | → ∞. Therefore, y(ζ ) is the solitary wave
solution. Other solitary wave solutions can be derived from y(ζ ) by the simple argument
shift ζ → ζ + C,C-constant. Since the right-hand side of (37) is infinitely differentiable
for y � 0, z < 2

3�
, the solution y(ζ ) is infinitely differentiable.

The qualitative behaviour (increase, decrease, concavity and convexity intervals, etc)
of y(ζ ) follows immediately from the related properties of T. Namely,
y has amplitude equal to 1;
y increases for ζ < 0 and decreases for ζ > 0;
there exist ζ1 < 0 and ζ2 > 0 such that y is concave for ζ < ζ1, ζ > ζ2 and convex for
ζ1 < ζ < ζ2;
y(ζ1) = y(ζ2) = 2

3 .
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Figure 7. Canonical wave in the case � = 0.9.
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Figure 8. Canonical wave in the case � = −0.9.

From (32) we easily see that the y(ζ ) solves (32) if and only if y(−ζ ) solves (32) with �

replaced by −�. Therefore, the solution corresponding to � < 0 is the reflection over the line
ζ = 0 of the solution corresponding to −� > 0. Two examples of the solitary wave solutions,
computed numerically by means of the second-order Adams–Bashforth method, are depicted
in figures 7 and 8.

Summing up, the general existence condition for the canonical solitary wave is

|�| < 1. (39)

We remark that the wave is asymmetric when � �= 0. To measure the asymmetry, let us
introduce some additional notation. We note that the solution y(ζ ) is strictly monotone to the
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left and right of the amplitude point ζ = 0. Therefore, for any y ∈ (0, 1) it has two inverses:
ζ−(y) < 0 and ζ +(y) > 0. The quantities |ζ−(y)| and |ζ +(y)| can be interpreted as the front
and rear half-lengths of the wave at the fixed level y. The asymmetry of the wave at level
y ∈ (0, 1) can be measured by the ratio of the half-lengths

|ζ +(y)|
|ζ−(y)| . (40)

We note that this ratio is increasing in �. Namely, the following lemma is valid.

Lemma 2. For any y ∈ (0, 1) the equality

|ζ +(y)|
|ζ−(y)| = Fy(�) (41)

holds where Fy(�) is an increasing function of � in the interval (−1, 1) and Fy(0) = 1.

Proof of lemma 2 is included in appendix B of the paper.
We remark that in the case 0 < � < 1 the asymmetry is greater than one, i.e. the front

half-length is greater than the rear half-length (figure 7). In contrast, if −1 < � < 0 then
the asymmetry is smaller than one, i.e. the front half-length is smaller than the rear half-
length (figure 8). In the intermediate case � = 0 the wave is symmetric and expressed by
y(ζ ) = cosh−2

(
ζ

2

)
.

4. Physical and geometrical properties of solitary waves in general form

Let us return to equation (28) with parameters A, κ and �. According to the results of the
previous section, it admits a solitary wave solution if and only if |�| < 1. This solution has
by (31) the form

w(ξ) = Ay�(κξ), (42)

where y� is the canonical solitary wave corresponding to given �.
Clearly, A = 3(c2−b)

µ
is the amplitude of the wave. Depending on the signs of c2 − b

and µ, waves with positive and negative amplitudes may occur. The absolute value of the
amplitude is increasing in c2.

Another important parameter is � = 2
[

c2−b
βc2−γ

]3/2 λ
µ

, which is related to the asymmetry.
The sign of � equals the sign of µλ. Therefore, the following subcases may occur:

(1) In the case A > 0, µλ > 0 the wave has the shape of the canonical wave in figure 7.
(2) In the case A > 0, µλ < 0 the wave has the shape of the canonical wave in figure 8.
(3) In the case A < 0 the wave is the reflection over the line w = 0 of the wave corresponding

to the amplitude −A.

In all mentioned cases the wavefunction w(ξ) is strictly monotone to the left and right of
the amplitude point ξ = 0. Therefore, it has two inverses: ξ−(w) < 0 and ξ+(w) > 0 which
are defined for any w between 0 and A. Let us fix some relative level y ∈ (0, 1) and consider
the front and rear half-lengths of the wave at this relative level, namely the quantities |ξ−(yA)|
and |ξ+(yA)|. The asymmetry of the wave at the relative level y ∈ (0, 1) is the ratio

|ξ+(yA)|
|ξ−(yA)| . (43)
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Since the relation ξ±(yA) = 1
κ
ζ±(y) holds between the inverses of non-canonical and

canonical solutions, by lemma 2 the asymmetry on the relative level y is expressed by the
formula

|ξ+(yA)|
|ξ−(yA)| = Fy(�) = Fy

(
2

[
c2 − b

βc2 − γ

]3/2
λ

µ

)
. (44)

The asymmetry depends on the velocity, the coefficients of linear terms in (11) b, β, γ , and
also on the ratio of the coefficients of nonlinear terms in micro- and macroscale λ

µ
. The latter

two coefficients have different influences for the wave process. The nonlinearity in macroscale
balances the dispersion, hence opens the possibility for the solitary wave. The nonlinearity
in microscale rather disturbs this balance. As a result, the ratio λ

µ
affects the shape of the

wave. The bigger the ratio λ
µ

, the bigger the asymmetry. The balance between nonlinearity

and dispersion collapses at the critical value |�| = 1 ⇔ ∣∣ λ
µ

∣∣ = 2
[

βc2−γ

c2−b

]3/2
.

To give an insight to the dependence of the asymmetry and the width of the wave on the
velocity, we have to distinguish the cases of normal and anomalous dispersion. The dispersion
relation of (11) is ω2 − bk2 + δ(βω2k2 − γ k4) = 0, where ω = ω(k) and k are the frequency
and the wave number, respectively [11]. This yields the formulae

cg(k) = cph(k) +
δk2[γ − βb]

cph(k)(δβk2 + 1)2
(45)

for the phase and group velocities cph = ω(k)

k
and cg = ω′(k). From these formulae we see

that the cases cph > cg (normal dispersion) and cph < cg (anomalous dispersion) correspond
to the relations γ

β
< b and γ

β
> b, respectively. In addition, there exists an intermediate case

cph = cg when γ

β
= b and dispersion is absent. The latter case, although being mathematically

correct, is not possible physically in a dispersive medium.
Let us start with the case of normal dispersion when γ

β
< b. In view of (27)

1

κ
= (δβ)1/2

[
1 −

b − γ

β

c2 − γ

β

]−1/2

, � = 2λ

µβ3/2

[
1 −

b − γ

β

c2 − γ

β

]3/2

. (46)

Due to the inequality γ

β
< b the term 1 − b− γ

β

c2− γ

β

is increasing in c2. Consequently, the width

1/κ decreases in c2. Further, in the case µλ > 0 the parameter � increases in c2. This by
(44) and the monotonicity of Fy (see lemma 2) implies that the asymmetry is increasing in
c2. In the opposite case µλ < 0 the asymmetry is decreasing in c2. The solvability condition
|�| = 2

[
c2−b

βc2−γ

]3/2∣∣ λ
µ

∣∣ < 1 defines the range for the velocity. The range is different in three
subcases 0 � q <

γ

b
,

γ

b
� q � β and β < q, where

q =
(

2λ

µ

)2/3

. (47)

Namely,

c2 ∈
(

0;
γ

b
− q

β − q
b

)
∪ (b;∞) if 0 � q <

γ

b
,

c2 ∈ (b;∞) if
γ

b
� q � β,

c2 ∈
(

b; q − γ

b

q − β
b

)
if β < q.
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Secondly, let us consider the case of anomalous dispersion when γ

β
> b. Then the term

1 − b− γ

β

c2− γ

β

in (46) is decreasing in c2. This implies that the width 1/κ increases in c2 and the

asymmetry decreases in c2 when µλ > 0 and increases in c2 when µλ < 0. The range for c2

is as follows.

c2 ∈ (0; b) ∪
( γ

b
− q

β − q
b;∞

)
if 0 � q < β,

c2 ∈ (0; b) if β � q � γ

b
,

c2 ∈
(

q − γ

b

q − β
b; b

)
if

γ

b
< q.

Summing up, both in the cases of normal and anomalous dispersion the size of the range
depends on the ratio

∣∣ λ
µ

∣∣. The bigger the ratio
∣∣ λ
µ

∣∣, the smaller the range. If µ > 0 then the

amplitude is positive for c2 > b and negative for c2 < b. Conversely, if µ < 0 then the
amplitude is negative for c2 > b and positive for c2 < b.

5. Discussion

It has been shown that the complicated nonlinear and dispersive effects in microstructured
solids may lead to stationary solutions, i.e. may be balanced. This is the precondition for
the existence of solitary waves, which has been proved analytically. The classical Korteweg–
de-Vries (KdV) model with quadratic nonlinearity and cubic dispersion leads to symmetric
solitary wave soliton [12]. In our case, the background of nonlinearities and dispersive effects
is more complicated (see equation (11)) resulting in an asymmetric solitary wave if λ �= 0
(figures 7, 8). Such asymmetric solitary waves are known to exist in various physical systems.
For example, long SH waves in a seismically active layer of the Earth’s crust represent a case of
weak energy influx and are described by a perturbed KdV-equation admitting also asymmetric
solitary waves [13]. Strain waves in rods where combined dissipative/amplification effects
due to various embedding or geometric conditions may occur, may also lead to asymmetric
solitary waves [6, 14].

The governing equation (11) is actually more general than just describing waves in
microstructured solids. The hierarchical properties of equation (11) reflect a general role
of mixed higher order derivatives (in the present case ascribed to inertia properties of
microstructure). A similar effect is also evident in generalized rod models [6, 14] but absent in
lattice models [15]. What makes the present case interesting is the mechanism of nonlinearities
due to various scales to be balanced with complicated dispersion.

The existence of solitary waves gives evidence of deep simplicity of complex systems. The
analytically established structural parameters of solitary waves can be used for determining the
properties of media, i.e. posing and solving inverse problems. First, the existence of symmetric
solitary waves gives additional conditions between the parameters of the governing equation
(see [6] and references therein). Second, the asymmetry (and also the amplitude and width)
of solitary waves, analysed in this paper, gives clearly additional information on properties of
microstructured solids that can be used in nondestructive testing (NDT) of material properties.
The experimental studies of strain waves in microstructured materials [16] have demonstrated
the asymmetry of solitary waves. In this case tungsten–epoxy composites were used with
reference samples made of aluminium. Based on derived strict conditions, more detailed
studies to elaborate concrete algorithms of NDT are in progress.
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Appendix A. Proof of lemma 1

First we prove the inequality βc2 − γ �= 0. Let us suppose that (18) has a solitary wave
solution and βc2 − γ = 0. Then (21) has the form

−δ3/2λw′w′′ =
(
c2 − b − µ

2
w

)
w. (A.1)

Evidently, λ �= 0. Otherwise w is a constant, hence does not satisfy (19). Since w(ξ) → 0
as |ξ | → ∞, the function |w| has an absolute maximum at some point ξ1 ∈ R. We have
w′(ξ1) = 0. This by (A.1) implies w(ξ1) = ν := 2(c2 − b)/µ. Further, since w′(ξ) → 0
as |ξ | → ∞, |w′| has an absolute maximum at a point ξ2 ∈ R. We have w′′(ξ2) = 0 and
by (A.1) either w(ξ2) = ν or w(ξ2) = 0. In the former case |w| attains values greater than
|ν| in a neighbourhood of ξ2, because w′(ξ2) �= 0. This is in contradiction with the proved
statement that |ν| is the absolute maximum of |w|. In the latter case w changes the sign at
ξ2. Then, in view of w(ξ) → 0 as |ξ | → ∞, there exist ξ3, ξ4 ∈ R, such that w(ξ3) < 0 and
w(ξ4) > 0. Moreover, w′(ξ3) = w′(ξ4) = 0. Relation (A.1) implies w(ξj ) ∈ {0; ν}, j = 3, 4.
But this contradicts the inequalities w(ξ3) < 0 and w(ξ4) > 0. Consequently, the supposition
βc2 − γ = 0 is wrong. We obtain βc2 − γ �= 0.

Next let us prove the inequality c2 −b �= 0. Suppose that (18) has a solitary wave solution
and c2 − b = 0. Then (18) reads

−µ

2
w2 − [δ(βc2 − γ ) − δ3/2λw′]w′′ = 0. (A.2)

This implies

sign w′′ = sign[δ(βc2 − γ ) − δ3/2λw′]. (A.3)

Since w(ξ) → 0 as |ξ | → ∞, function w′′ must at least twice change the sign on the line
(−∞,∞). Therefore, there exist points ξ̂1 �= ξ̂2 such that

w′′(ξ̂1) = δ(βc2 − γ ) − δ3/2λw′(ξ̂1) = w′′(ξ̂2) = δ(βc2 − γ ) − δ3/2λw′(ξ̂2) = 0 (A.4)

and w′′, δ(βc2 − γ ) − δ3/2λw′ differ from 0 between ξ̂1 and ξ̂2. By (A.4) and Rolle’s theorem
there exists a point ξ̂3 between ξ̂1 and ξ̂2 such that [δ(βc2 − γ ) − δ3/2λw′]′ = 0 at ξ̂3. From
this relation we obtain λw′′(ξ̂3) = 0. Observing that λ �= 0 (otherwise from (A.3) we had
monotone w′, which cannot approach zero as |ξ | → ∞), we see that w′′(ξ̂3) = 0. But
since ξ̂3 is located between ξ̂1 and ξ̂2, the function w′′ differs from zero at ξ̂3. We reached a
contradiction. Consequently, the supposition c2 − b = 0 is wrong. We obtain c2 − b �= 0.

It remains to prove µ �= 0. Again, we suppose that (18) has a solitary wave solution but
µ = 0. Then from (22) we obtain

w2 = δ(βc2 − γ )

c2 − b
(w′)2 − 2δ3/2λ

3(c2 − b)
(w′)3. (A.5)

In view of (A.5) function w equals zero in every stationary point. But on the other hand, due
to the relation w(ξ) → 0 as |ξ | → ∞ function w must have at least one stationary point ξ̄

such that w(ξ̄) �= 0. We reached a contradiction. Thus, µ �= 0. The proof is complete.
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Appendix B. Proof of lemma 2

Let us differentiate the equation of the trajectory z2 − �z3 = y2 − y3 with respect to �:

2z
dz

d�
− 3�z2 dz

d�
− z3 = 0 (B.1)

and solve this equation for dz
d�

:

dz

d�
= z2

2 − 3�z
. (B.2)

Since z < 2
3�

on the trajectory T (figure 6), the inequality dz
d�

> 0 holds for any z �= 0.
Recalling that z = y ′, we see that the derivative y ′(ξ) is increasing in � for any ξ �= 0,
because ξ = 0 is the single stationary point of the solitary wave solution y(ξ) (figure 7). This
yields that derivatives of the inverses of the solution ζ−′

(y) and ζ +′
(y) are decreasing in � for

any y �= 1. Observing in addition the signs of these inverses we have the following relations:

ζ−′
(y) is positive and increases in �

−ζ +′
(y) is positive and decreases in �.

(B.3)

Thus we can express the asymmetry at the level y ∈ (0, 1) as follows:

|ζ +(y)|
|ζ−(y)| =

∣∣∣∣∣
∫ y

1 ζ +′
(s) ds∫ y

1 ζ−′
(s) ds

∣∣∣∣∣ =
∫ y

1 [−ζ +′
(s)] ds∫ y

1 ζ−′
(s) ds

.

By virtue of (B.3), the asymmetry is increasing in �. Let us denote the function, which
assigns to any value of � from (−1, 1) the asymmetry, by Fy(�). We have proved that Fy(�)

is increasing. In the case � = 0 the solution is symmetric (see (35)), hence Fy(0) = 1. The
lemma is proved.
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